284 research outputs found

    Detecting adversarial examples with inductive Venn-ABERS predictors

    Get PDF
    Inductive Venn-ABERS predictors (IVAPs) are a type of probabilistic predictors with the theoretical guarantee that their predictions are perfectly calibrated. We propose to exploit this calibration property for the detection of adversarial examples in binary classification tasks. By rejecting predictions if the uncertainty of the IVAP is too high, we obtain an algorithm that is both accurate on the original test set and significantly more robust to adversarial examples. The method appears to be competitive to the state of the art in adversarial defense, both in terms of robustness as well as scalabilit

    Detecting adversarial manipulation using inductive Venn-ABERS predictors

    Get PDF
    Inductive Venn-ABERS predictors (IVAPs) are a type of probabilistic predictors with the theoretical guarantee that their predictions are perfectly calibrated. In this paper, we propose to exploit this calibration property for the detection of adversarial examples in binary classification tasks. By rejecting predictions if the uncertainty of the IVAP is too high, we obtain an algorithm that is both accurate on the original test set and resistant to adversarial examples. This robustness is observed on adversarials for the underlying model as well as adversarials that were generated by taking the IVAP into account. The method appears to offer competitive robustness compared to the state-of-the-art in adversarial defense yet it is computationally much more tractable

    Hardening DGA classifiers utilizing IVAP

    Get PDF
    Domain Generation Algorithms (DGAs) are used by malware to generate a deterministic set of domains, usually by utilizing a pseudo-random seed. A malicious botmaster can establish connections between their command-and-control center (C&C) and any malware-infected machines by registering domains that will be DGA-generated given a specific seed, rendering traditional domain blacklisting ineffective. Given the nature of this threat, the real-time detection of DGA domains based on incoming DNS traffic is highly important. The use of neural network machine learning (ML) models for this task has been well-studied, but there is still substantial room for improvement. In this paper, we propose to use Inductive Venn-Abers predictors (IVAPs) to calibrate the output of existing ML models for DGA classification. The IVAP is a computationally efficient procedure which consistently improves the predictive accuracy of classifiers at the expense of not offering predictions for a small subset of inputs and consuming an additional amount of training data

    Distilling Deep RL Models Into Interpretable Neuro-Fuzzy Systems

    Full text link
    Deep Reinforcement Learning uses a deep neural network to encode a policy, which achieves very good performance in a wide range of applications but is widely regarded as a black box model. A more interpretable alternative to deep networks is given by neuro-fuzzy controllers. Unfortunately, neuro-fuzzy controllers often need a large number of rules to solve relatively simple tasks, making them difficult to interpret. In this work, we present an algorithm to distill the policy from a deep Q-network into a compact neuro-fuzzy controller. This allows us to train compact neuro-fuzzy controllers through distillation to solve tasks that they are unable to solve directly, combining the flexibility of deep reinforcement learning and the interpretability of compact rule bases. We demonstrate the algorithm on three well-known environments from OpenAI Gym, where we nearly match the performance of a DQN agent using only 2 to 6 fuzzy rules

    CharBot: A Simple and Effective Method for Evading DGA Classifiers

    Full text link
    Domain generation algorithms (DGAs) are commonly leveraged by malware to create lists of domain names which can be used for command and control (C&C) purposes. Approaches based on machine learning have recently been developed to automatically detect generated domain names in real-time. In this work, we present a novel DGA called CharBot which is capable of producing large numbers of unregistered domain names that are not detected by state-of-the-art classifiers for real-time detection of DGAs, including the recently published methods FANCI (a random forest based on human-engineered features) and LSTM.MI (a deep learning approach). CharBot is very simple, effective and requires no knowledge of the targeted DGA classifiers. We show that retraining the classifiers on CharBot samples is not a viable defense strategy. We believe these findings show that DGA classifiers are inherently vulnerable to adversarial attacks if they rely only on the domain name string to make a decision. Designing a robust DGA classifier may, therefore, necessitate the use of additional information besides the domain name alone. To the best of our knowledge, CharBot is the simplest and most efficient black-box adversarial attack against DGA classifiers proposed to date

    Lower bounds on the robustness to adversarial perturbations

    No full text
    The input-output mappings learned by state-of-the-art neural networks are significantly discontinuous. It is possible to cause a neural network used for image recognition to misclassify its input by applying very specific, hardly perceptible perturbations to the input, called adversarial perturbations. Many hypotheses have been proposed to explain the existence of these peculiar samples as well as several methods to mitigate them, but a proven explanation remains elusive. In this work, we take steps towards a formal characterization of adversarial perturbations by deriving lower bounds on the magnitudes of perturbations necessary to change the classification of neural networks. The proposed bounds can be computed efficiently, requiring time at most linear in the number of parameters and hyperparameters of the model for any given sample. This makes them suitable for use in model selection, when one wishes to find out which of several proposed classifiers is most robust to adversarial perturbations. They may also be used as a basis for developing techniques to increase the robustness of classifiers, since they enjoy the theoretical guarantee that no adversarial perturbation could possibly be any smaller than the quantities provided by the bounds. We experimentally verify the bounds on the MNIST and CIFAR-10 data sets and find no violations. Additionally, the experimental results suggest that very small adversarial perturbations may occur with non-zero probability on natural samples

    Developing Mathematical Thinking: Changing Teachers’ Knowledge and Instruction

    Get PDF
    In the present research, we evaluated the effectiveness of a multi-year professional development program in mathematics for elementary teachers. Each year the program focused on a different domain of mathematics. We found the program increased teachers’ knowledge of (a) number and operations, (b) measurement and geometry, and (c) probability and statistics. We also examined the relation between mathematical knowledge and teaching practices. Across the three domains neither pretest nor posttest mathematical knowledge were related to classroom teaching practices. However, change in knowledge was positively related to six different dimensions of teaching practice for number and operations, and for measurement and geometry; and was positively related to four or six dimensions for probability and statistics. That is, those teachers with greater changes in knowledge demonstrated more effective instruction

    Inline detection of DGA domains using side information

    Get PDF
    Malware applications typically use a command and control (C&C) server to manage bots to perform malicious activities. Domain Generation Algorithms (DGAs) are popular methods for generating pseudo-random domain names that can be used to establish a communication between an infected bot and the C&C server. In recent years, machine learning based systems have been widely used to detect DGAs. There are several well known state-of-the-art classifiers in the literature that can detect DGA domain names in real-time applications with high predictive performance. However, these DGA classifiers are highly vulnerable to adversarial attacks in which adversaries purposely craft domain names to evade DGA detection classifiers. In our work, we focus on hardening DGA classifiers against adversarial attacks. To this end, we train and evaluate state-of-the-art deep learning and random forest (RF) classifiers for DGA detection using side information that is harder for adversaries to manipulate than the domain name itself. Additionally, the side information features are selected such that they are easily obtainable in practice to perform inline DGA detection. The performance and robustness of these models is assessed by exposing them to one day of real-traffic data as well as domains generated by adversarial attack algorithms. We found that the DGA classifiers that rely on both the domain name and side information have high performance and are more robust against adversaries

    The ICDP Lake Bosumtwi Drilling Project: A First Report

    Get PDF
    The 10.5 -km-diameter, 1.07-Ma Bosumtwi impact crater was the subject of a multi-disciplinary and international drilling effort of the International Continental Scientific Drilling Program (ICDP) from July to October 2004. Sixteen different holes were drilled at six locations within the lake, to a maximum depth of 540 m. A total of about 2.2 km of core material was obtained. Despite some technical and logistical challenges, the project has been very successful and it is anticipated that the first scientific results will be available in late 2005
    • …
    corecore